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We give a natural definition of multivariate divided differences and we construct
the multivariate analog of Lagrange interpolation. We consider Hermite inter
polation in the plane case only. We also give a multivariate representation of a
function f in terms of the above mentioned interpolating polynomials and divided
differences.

INTRODUCTION

In this paper we present a natural definition of multivariate divided
differences. We also generalize Lagrange and Hermite interpolation to the
multivariate case. This gives a linear projection from CO(R k

) (the space of
continuous functions on R k) onto IIr-k+ I (R k) (the space of k-variate
polynomials of total degree ::;;;r - k + 1), where r + 1 is the number of inter
polation "knots".

For another, closely related, approach to multivariate Lagrange-Hermite
interpolation, namely, Kergin interpolation, we refer to [2, 9-121. Kergin
interpolation in the Lagrange case gives a linear projection from the space
Ck-1(R k) onto IIr(R k).

The authors in [2] gave a related but different definition of multivariate
divided differences, suitable for Kergin's approach.

Some basic formulas presented here were anounced in [6]. They are
analogous to the one-dimensional ones (see [3]).

In our investigation multivariate B-splines play important role. They were
introduced by de Boor (see [1]) who followed the geometric interpretation of
the univariate B-splines given by H. B. Curry and I. J. Schoenberg (see [4 D.
The recurrence relations of Micchelli for the multivariate B-splines and the
related linear functionals we shall use often.
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We begin with the definition of the univariate divided differences for
distinct points:

It is easy to check the following useful relation

°~ j ~ r. (1)

From this relation we readily get the familiar recurrence relation for the
divided difference

(2)

The Hermite-Genocchi representation for the divided difference of a
smooth function is

[to"'" trJ f(t) = f f(r)(voto+ ... + vrtr) dV I ... dv" (3)
Q'

where Qr = {(VI'"'' vr) IL:r=1 Vi ~ 1, vj ~ O,j= 1,..., r} and Vo = 1 - L:r=1 Vi'
To prove (3) (see [13]) it is enough to check that the right hand side

integral in (3), as well as the left hand side, satisfies the recurrence relation
(2).

Let us denote as in [12 J

i f:= f f(voxO + ... + vrxr) dV I ... dvr, (4)
[xO, ... ,xr] Qr

where Xi E R k
, i = 0,..., r andf: R k

--+ R.
Now on account of relations (1), (3) we have

J, «t - tj ) f(t»(r) = J, f(r-I).
[10' ....1,] [to..... lj-I.IJ+I., ... I,1

If we set f(r-I) := rp, we get
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This relation is easily generalized to multivariate functions f: R k --+ Rand
Xi E R k

, i = 0,..., r.
Explicitly, we have

f . Dx-x1f(x) + r f f = f f· (5)
[XO.....xr) [xo.....xr] [xO .....x1-I.xl+I .....xr)

To prove this it is enough to check it for so called "ridge" functions

where g is a univariate function (for this method see [9]).
For "ridge" function f we have

and

Therefore (5) is reduced to the univariate case.
Now let y = I:~=O.uiXi, .u = I:~=O.ui' Then we find from (5) the relation

r

f ° Dux-J(x) + r.u for f = .2.: .ui f 0 i-I ;+1 r f. (6)[x .....x'l Ix ..... x ) ,=0 [x .....x .x .....x)

In particular if.u = 0, then (6) reduced to the following Micchelli's relation
(cf. [12D

(7)

We now recall the definition of the k-variate B-spline with knot set
{xo,... ,x'}, r~k+ 1, voldxO,...,x'] ,*0, where

[XO, ... ,x'j:= lx Ix= i ViXi, t vi = I,Vj~O,j=o, ... ,rl.
,=0 1=0 \

The condition imposed on xO,... , x' implies existence of a proper simplex
[ ° ']' R k

• h . i· ° h' h fi k11 = Y ,..., Y 10 Wit vertices y, I = ,... , r aVlOg t e same Irst
coordinates as Xi, i = 0, , r, respectively (see [5 D, that is, yi E R', i = 0,... , r,
yO = (xo,... ), ..., y' = (x', ) and vol, 11 '* 0, 11 = [yO,... , y'].

Now de Boor's definition of the k-variate B-spline at x E Rk, x = (Xl'"'' xk)
is

( I ° ')- vol,_k{y EI1 IYj=xj ,j= l,... ,k}
M x x ,...,X - I

vo ,11
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In one dimension this is just the Curry-Schoenberg geometric inter
pretation of univariate B-spline [41.

The following important relation implies the independence of
M(x Ixo,..., x') from the choice of yi, i = 0,..., r.

J f(x) M(x Ixo,... , x') dx = r! 5 f· (8)
Rk [xo.....x']

The proof of this relation is based on familiar change of variables t =

(tl''''' t,) = voyO + '" + v,y'.
Still to have (8) also for r = k, let us define

where (J = [xo,... , xk1 and Xu is the characteristic function for (J.

Combining relations (5) and (8) we get

f M(x IxO,..., x') Dx_xJ!(x) dx +rf M(x IxO,..., x') f(x) dx
Rk Rk

f I ° .-I .+ I ') ()= M(x x ,... ,;xl , ;xl ,..., x f x dx.
Rk

If the splines M(x I XO,..., x') and M(x I XO,..., xi - I, xi+ 1,..., x') are
continuous then by a standard argument M(x IxO,..., x') has continuous
partial derivatives and

Dxj_xM(x IxO,... , x') + (r - k) M(x IxO,... , x')

= r . M(x IxO,... , xi-I, >!+ 1,..., x r
). (9)

This relation was presented in [7] in greater generality, here we have
proved it by the method similar to Micchelli's in [13].

From (9) we easily get for y = L~=o ,uiXi and ,u = L~=o Pi'

,
'" M( I ° i-I i + I ')= r L Pi x X ,... , X , X , ... , X •
i=O

(10)

We mention that two important special cases of (10), namely, the cases
(i) P = 0, (ii) P = 1, x= Y = L~=o PiXi, were found earlier by Micchelli [121
and (i) was independently found by Dahmen [51.

We have proved here relations (9), (10) under the condition that all the B
splines appearing there are continuous. Of course the latter is the case if the

640/34/3·6
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points xo, , x r, r ~ k + 1 are in general position, that is every k + 1 points
from {xo, , x r} are affinely independent. In spite of this conjugate relations
(5), (6) and (7) hold without restrictions.

Finally we present Micchelli's recurrence relation (see r13]) which in the
univariate case is due to Meinardus:

M(x Ixo,... , x r) = r {Xl t- r+k-IM((1- t) Xo + tx IXl, ... , xr) dt, (11)

whenever volk[x 1
, ... , xrJ =1= 0.

2. MULTIVARIATE DIVIDED DIFFERENCES

The following definition differs from the one presented in [2 J on the value
of modulus of the multi-integer a = (a l , ... , ak ).

DEFINITION. Let xO,... ,xrERk, volk[xo,... ,xrJ=I=O, a=(a1,... ,ak), lal=
a 1 + ... + ak = r - k + 1 and letfbe sufficiently smooth. Then the k-variate
a-divided difference of the function f at xO, ... , x r is

[xo, ..., xrJ'" f := ~f M(x IxO,..., x r)n"'f(x) dx,
a. Rk

where

'" _( a )"" (a )"'kn - - .. , - ,
oX 1 oXk

and

[ 0 k-lJ"'f'-(k-l),r f-'ffO k-l}x ,..., x .- . ), -. x ,... , x .
IxO•••• ,xk-'l

Let us now introduce some notation: I~ := collection of subsets of fO, ... , n}
of cardinality m.

We briefly write, for i=(io,...,ik_l)EI~,

We set

YI x io
1

d(x i
, Y, y) :=

Yk x io
k

Y

for Y = (YI' ..., Yk) E R k, i = (io,"" ik_ l ) E I~, y E R.
Let also el E Rk, (el)j = oj, j = 1,..., k.
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THEOREM I. Let xo,..., x' E R k be in general position, that is,
voldxl°,..., xlk ] *" 0 for all (jo,"" jk) E I~+ I' a = (a l , ••• , ak)' Ial = r - k + I.

Then

[xo, ..., x,]Q f = L Ci f {Xi},
iEI~

where

C" = (_ly-k+1 r! D7:1 d(x
i
, <, 0)

I a! (k - I)! DNdo..... l
k

_
1
d(x', Xl, 1)

for i = (io,"" ik _ I ). Alsof{xl
} := f{x lo, ... , X iH }.

The following Lemma 1 is interesting in itself and it is crucial in the proof
of Theorem I. To establish it we need some preliminaries.

Let voldxo,... , x'] *" O. Regions which are bounded but not intersected by
the convex hull of k points from {xo, ... , x'} we shall call p-regions.

It is not difficult to prove (with the help of (10)) that M(x IxO,..., x') is a
polynomial of total degree ~r - k in every p-region and, if xO,..., x' are in
general position then M(xlxo,...,x')E C,-k+I(R k) (see [5,7,12]).

Thus D~M(x I xO,..., x'), 1131 = r - k, is constant on every p-region E, let us
denote it by D~M/E.

If E I' E 2 are neighbouring p-regions with common side contained in
[xio, ... , X ik

- I ] then we set

.11 I~~ D~M :=.1[Xio..... xik_111~~ D~M(x IxO,..., x') := D~M lEI - D~M IE
2

'

By the right hand side (left hand side) of [x lo, ... , Xi k-I] we mean the half
space {x Id(x l

, x, 1) > O}, «0), where i = (io,"" ik _ I )·

LEMMA 1. Let xO,..., x' E R k be in general position, 13 = (/31'"'' 13k ), 1131 =
r - k and E I' E2 be neighbouring p-regions with common side contained in
A '- [1o Ik-I] , - (' . ).- x ,... ,x ,1- 10'"'' Ik_1 .

Then

if E 1 is on the right hand side ofA.

Proof Assume that XO is on the left hand side of A and that r > k.
Let x be in the interior of E 2 and let it be such that

(i) The half-line (XO + t(x - XO), t > 1) first intersects the side A.

(ii) It intersects different sides [xlo, ... , xlk - 1 ] at different points.
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Since r> k, we have IPI> 0 whence for some m, Pm> o. Set P- em =
(fJ1> ..·,Pm-I'Pm - 1, Pm+I"'"Pk ). Then Micchelli's formula (II) gives

DIJ-emM(x IxO,..., x r ) = r {Xl t- 2DIJ-emM(xO + t(x - XO) IXl, ..., x r ) dt

= r· M(x IXl, ... , x r
)

(DIJ-emM(xO + ti(x - XO) I Xl, ... , x r
) )

\~ \ - DIJ-emM(xO + tt(X - XO) I Xl, ... , x r
}

+r ,
I t{

where t/ are all the values of t at which the half-line (XO + t(x - XO), t > I)
intersects sides {xi&, ..., xii-'l, / = (j~,...,jLI) E I~. If s is sufficiently small
then by (ii) the half-lines (XO + t(x - XO), t > 1) and (XO + t(x + se m - XO),
t > 1) intersect the same sides. Therefore

1 [DIJ-emM( m lor) DIJ-emM( lor)]- X + se x ,..., x - x x ,..., x
s

Since

d(xil, XO + t/(x - XO), 1) = d(xil, XO + tslx + se m
- XO), 1) = 0,

it follows that

Hence

DIJM(x I XO, ..., x r )

= -r " d(xi,ll' e
m

o
' 0) n m ° +( 0) I I )L. -.2-.....;-. .........:..-..:... [D,,-e M(x + t/ X - X x,... , x r

/ d(xl, x , 1)

- DIJ-emM(xO + t{-(x - XO) I Xl,... , x r )].

Now by (i) we get

IE IJ lor) d(x
i
, em, 0) IE IJ-em ( I I r)Ll A E'D M(x x ,..., x = r d( i 0 ) Lf A E'D M x x ,..., x .

2 x,x,1 2

We now pass to the case r = k, hence P= (0,..., 0).

(12)
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Since XO is on the left hand side of A, Id(xi, xO, 1)1 = -d(xi, xO, 1), it
follow~ that

A lEI M(x I XO io Xik-I) _ 1
LJ A E2 ' X ,... , - -d-(X~i~,x-'O;C-,-l-'r (13)

Notice, since .1A li~ M = -.1A ItM the relations (12), (13) hold unchanged
if XO is on the right hand side ofA.

It now remains to combine relations (12), (13). I

COROLLARY. We have the following equality

where E l' E 2 ; E;, E~ are paris of neighbouring p-regions with common side
contained in [x io,... , x ik- 1

] and E l' E; are on the right hand side of
[x io Xik-l],..., .

Proof of Theorem 1. Let a = (a 1 , ••• , ak)' am> O. On account of the
hypothesis of Theorem 1 it is not difficult to get

( Da f(x) M(x IXO, ... , x r
) dx

JRk

= (_l)r-k f -!-f(x)Da-emM(x IXO, ... ,xr)dx.
Rk ()xm

Denote by n the collection of all p-regions. Then we have

( _o-f(x) Da-emM(x IxO,..., x r ) dx
JRk oXm

= L Da-emM IE f -!- f(x) dx
EeQ E ()Xm

= L Da-emM IE' f d(f(x) dX 1 1\ ... 1\ dxm - 1 1\ dxm +11\ ... 1\ dxk )·

EeCl E

The above corollary and Stokes' Theorem give

L .1 [xiO,oo.,Xik-l]If M(x IXO, ..., x r
)

(iol .. "ik_1)EI;;

.J f(x) dX 1 1\ ... 1\ dXm _ 1 1\ dxm + 1 1\ '" 1\ dxk •
[xio, ... ,Xik-l)
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To complete the proof, we notice that

f f(x)dx t /\ •.• /\ dxm_ t /\ dxm+ 1 /\ ... /\ dX k
[x1o, ••• ,X1k-l]

= d(x i, em, 0) f{x i }.

and make use of Lemma 1. I

3. LAGRANGE INTERPOLATION IN R k

THEOREM 2. Let xo, .." x r E R k be in general position and Yi' i E I~, are
real numbers.

Then there exists a unique k-variate polynomial P of total degree not
exceeding r - k + 1 such that

i EI~.

Proof Consider the map

defined by (AP)i = P{x i}, i E I~.

Since dimI1r_k+t(Rk)=dim(RN)=(rtt), it is enough to prove that
(AP)i = 0, Vi E I~ force P == 0.

Indeed from Theorem 1 and P{x i
} = 0, i E I~, we have [xo, ..., x r

]", P = °
for all a, Ia I= r - k + 1.

This means that the total degree of P is <r - k + 1. Now we apply
Theorem 1 to the points xo,... , x r

-
t and similarly get [xo, ... , x r

-
t

]", P = °for
all a, Ia I= (r - 1) - k + 1 which means that the total degree of P is <r - k.
Continuing in this way, we finally obtain P == 0. I

We denote by Pf the above unique polynomial for which

Vi E I~.

This we shall briefly write

THEOREM 3. Let xo,... , x r E R k be in general position,
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(15)

fix, x\... , Xik- 1
} = Pf{x, x\..., Xik- 1

} +f T1 Dx-xtf (14)
[x,xO, ... ,xrj l*il,··.,i k_ 1

O.;;I';;r

or

f{x il Xik- I} P {x Xi, x ik- I},x ,... , = f' ,... ,

+ L [X,Xo, ...,xrja f(qJa-Pcp){X,Xi', ... ,Xik-I},
lal=r-k+2

Proof Let 0 ~ m ~ r, mE {i l , ... , ik-d. Of course

Then we have by Micchelli's relation (7)

J[X,xo, .. .,Xml l*il~'ik_1 Dx-xlf - Pf)
O.;;I';;m

= ( T1 Dx-xlf - Pf)
)rx,xo, ... ,xm-lJ l*i" ... ,ik_1

O.;;I';;m-1

- Jrxo, ... ,Xml l*il~'ik_1 Dx-xl(f - Pf)'
O';;/';;m-I

Since

J1XO, ... ,Xml I*il~,h-I Dx_Af - Pf) = 0
O';;I';;m-1

by Theorem 1, the last equality gives (14).
Equation (15) easily follows from (14). It is not difficult to get (15) as

well using only the fact that [x, xO, ... , xrl au - Pf)' Ia I= r - k + 2, is linear
combination of

Formula (14) is similar to the error formula in Kergin's interpolation,
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obtained by Micchelli and Milman [11, 121. These formulas are analogous to
the following one-dimensional relation

I(x) = P(x) + (x - xo) ... (x - xr)[x, xO'oo" x r1f,

where P is the unique polynomial of degree <,r such that

P(x;) = I(xi ), i=O,... , r.

In the univariate case we have for that polynomial Newton's represen
tation

P(x) = I(xo) + (x - xo)[xo, x l 1f + ...
+ (x - xo) ... (x - xr_I)[xo,oo., xrlf

The next theorem gives us the multivariate analog of this formula.
First we shall prove

LEMMA 2. Let x, xio,oo., x im E Rk, then

Dx-ximJ. . I=J . . I-J. . f (16)
Ix ,X'O, ••• ,Xlm] [x ,x ,XlO, ••••Xlm-tl Ix ,X'o, ••• ,X'm]

Proof Let 0 = Y = (1 + s)x - sx im - (x + sex - x im )). Then Micchelli's
formula (7) gives

0= - Jrx,x+s(x-xim),xio, ....ximl Dyl = (1 + s) Jrx+s(x-xim),xio, ... ,ximl I

-sJ ... I-J. . I,
[x,X+ s(x-x'm),xlO, ••• ,X1m-l] [X,X1o, •.• ,X1m]

hence

+[Jrx+s(x-Xim).xio .... ,ximJ I - Jrx,xio, ... ,ximJ I J

=J I-I, f.
[x.x +s(x- Xim),XiO••••• X;m-I] [x+ s(x-Xim),xiO, ••• ,ximJ

Now it remains to pass to the limit as s -> o. I
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From (16) readily follows
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=I·f . . I-If iii. (17)
[~.xIO"",xlm-l] (~.xo•..• ,xm]

/+1 /

Also the analog of (16) for multivariate B-splines is

Dx_ximM(y IX, x io,..., x im )

= M(y Ix, x, xio, ..., X im - I ) - M(y IX, x io,..., X im -- I )

THEOREM 4. Let Pf =II {xo, ... , x r
}. Then we have

r

PJx)= L L IxO,...,xi]al(qJa-P",)(x),
i=k-I lal=i-k+1

h - a dP - I{ ° lal+k-2}p-Owere qJa - x an "'a - qJa X ,••• , X ''''0 = .

Proof On account of Theorem 3 we have

P { o k-2}fllxO.... ,x'l x, x ,..., x

P }{ ° k-2}= I/(x0,. .. ,xr-1 X, X , ... , X

(18)

+ L lx, xO,..., xr-I]a Pf/(xo, ....x'l(qJa - P",){x, xO, ... , x k- 2},
101 =r-k+ 1

where PflA is the unique polynomial of the corresponding degree which inter
polates I at the set A.

Since

I ° r-I]ap I r ° r-I]ap 10 r]alx, x ,..., x fI(xO.... ,x'i = x, X , ... , X fllxO... .,x'i = X , ... , X

therefore

P { o k-2}fllxO, ... ,x'l x, x ,..., x

P { o k-2}= fllxO.... ,x'-Ij x, X ,..., X

+ L Ixo,...,xr]OI(qJa-P"'a){x,xo,...,xk-2}.
101 =r-k+ 1
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P { o k-2}fllxO .....xr~IJ X, X ,... , X

= Pf/{xO.... ,xr~2J + L [XO,oo., x r- I ]'" f(rp", - P",){x, xO,.oo, Xk- 2}.
1",I=r-k

Continuing in this way, we finally get

P { o k-2} [0 k-I]ff/lxo, ....xk~'J x, x "00' x = x '00" x ,

as can be easily checked.
If we sum up these relations we get

P{ ° k-2}f X,X '00" X

= L L [XO,,..,xi]"'f(rp,,,-P,,,){X,XO,00.,Xk-2}
i=k-l 1"'1 =i-k+ 1

whence by Lemma 2, the proof is completed. I
From this theorem we can readily find the polynomial of total degree

<,r - k + 1, Pjo.....h -
1

' which for the set {xo,oo., x r} has the property:

Namely,

p. . (x) = '\~ Cc; . (m - P )(x)
JO,· .. ,Jk-i L.... Jo,· .. ,lk-I "t"o: (j)a '

1",1 =r-k+ 1

where P"'a=rp",/{xo,.oo,xr}\{~o} and C'!o.... ,jH=C'j is given as in
Theorem 1.

Let P", =rpa!{xo,.,.,xm
}, rp",=x"', lal=m-k+ 1, {il,.00,ik_1)EI;_I'

Then, of c"ourse, Theorem 3 gives

(19)

The next lemma gives a striking formula for the value (rp", - P",)(x).

LEMMA 3. Let P"'a=rp",/{xo,,..,xm
}, lal=m-k+ 1, (i/,,..,ik_I)EI;_/,

2 <, I <, k. Then
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( P ){ il Ik_l}qJ '" - cp X, ..., X, X ,..., X
a ~

1

In particular for 1= k,

(qJ",-PcpJ(x)=(k-l)! L (qJ",-Pcp){X,X\ ... ,Xh -
,

}.
(j I"" ,jk-I) E1f:'_1

299

(20)

(21 )

Proof Let us prove (20) by induction on I. It is not hard to obtain from
(19)

'\'......
O<;;"<;;r

n=l:-i), .... i k _ 1

( P ){ "i2 i k - I }qJ",- epa X,X,X ,...,X .

(22)

Using Lemma 2 we get (20) for 1=2, namely,

Assume that (20) holds for 1= 10 , Hence

DX-XIO(qJ", - Pcp ){x,..., X, Xl1o, ..., Xik- I }
a~

10

= I Dx-xlo(qJ", - Pcp)
(j I···· .jIO-I) EI~

UI" •••jlo-dn(IIO..... lk-d =0

{X, ~I, ... , ~Io-l, Xilo, ... , Xik- I }.

We now apply (17) and (22) to the left and right hand side, respectively.
This gives

= 10 I (qJ", - Pcp){X, ~J, ... , ~Io-J, Xllo, ..., Xlk- 1
}

(j I.· ...jlo-I) EII~

+ I I (qJ",-Pcp)
Up'" .j1o-l) EII~ "*j 1"" ·jIO-I.iIO.··· .l k _ 1

UI.....ho-dnliIO..... lk-d =0

{ ..II ••11 I X" Xii +1 Xik-J}X,..\.- , ... ,..\.- 0- , , 0 "0"

I



300 HAKOP A. HAKOPIAN

Let us mention that (21) holds also for qJ a replaced by any polynomial of
total degree ~m - k + 1.

We now obtain the following interesting analog of (18).

COROLLARY. Let Pj=f/{xo,... ,xr
}. Then we have

r

PJx)=(k-l)! L L
i=k-J (j" ... ,h_,)E1t.:

(23 )

Proof This readily follows from relations (18), (19) and (21). I

In particular if all the points XO, ...,xr in (23) coincide with XO then PJx)
(as in Kergin interpolation [11, 12]) reduces to the Taylor polynomial off at
xo:

The following lemma finds its origin in [10], where a similar result for
Kergin interpolation is given. Here we use a weaker hypothesis.

LEMMA 4. Let xO, ... , x r E R k be in general position,

n= 1,... ,m,

and

m

f i . L qnfn = 0,
[x I, ... ,X'l+k] n= 1

where qn' n = 1,..., m, is a constant coefficient homogeneous differential
operator of order I. Then

m

L qnPjn= O.
n=J

Proof Denote
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First we note that

m

f i . P =f. . I qnPjn = 0,
Ix 1..... XI/+k] [x't ..... x1i+k] n=1

since
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by Theorem I or by Micchelli's relation (7).
Once more relation (7) implies for all a, Ia I = i - k - 1+ 1 and i, 1+

k - 1 <. i <. r,

f Dap= 0.
[XO.....x i ]

Indeed, the left hand side is linear combination of

f i . P,
[x 1, ... ,Xll+k]

and since PE IIr_k_1+I(Rk) the proof is complete. I
This lemma readily provides the complex analytic version of our inter

polation essentially in the same way as in the Kergin case, for which we refer
to [9, Sect. 5].

At the end of this part we give some error estimates, which find their
origin in [12].

LEMMA 5. Let xO,oo.,xrERk, Pj=fl{xo,oo.,xr} and {il'oo.,ik_I)EI~_I'

Then

If{ il X lk- I} P {x II xlk-I}Ix, x,..., - j , x '00" LOO(K)

and

If(x) - Plx)ILoo(K)

Ck rk+l( '" (r-k+l)! liP ) liP<. (r-k+ I)! (dq(K)) - lal=7:.k+l a! IIDaf LOO(K) ,(25)

where lip + llq = 1, K = [xo,..., x r] and dq(K) = diameter ofKin Iq, and Ck
is constant depending only on k.
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Proof Since the volume of Qr is l/r!, (24) follows from (14). To prove
(25) we apply Lemma 2 to (15) k times, and then make use of (19), (20). I

Let us mention that (25) essentially is the same as error estimate for
Kergin interpolation [12]. Thus the result of Micchelli on interpolating a
function which has an analytic extension to a sufficiently large region
containing the interpolation points (see Theorem 4 in [12]) holds also in our
case.

4. HERMITE INTERPOLATION IN THE PLANE

We begin this part with the definition of B-splines on hyperplanes.
Assume that xo,..., x r E R m lie on some hyperplane L of k dimension,

k ~ m, that is volk [xo, ... , x r]*- 0, volk + 1 [Xo, ..., Xr]= 0.
Then we find yl E Rr+m-k, i = 0,..., r, such that / has first m coordinates

as Xl, i = 0,..., r respectively, and

volr°*-O, 0= [yo, ... ,yr].

Now the definition looks as before, i.e., for x = (Xl'"'' X m) E L,

M ( I
° r)_ volr_dyEoIYI=xpi= I, ... ,m}

L X X ,... ,X - I .
VO rO

The relation analogous to (8) in this case is

f f(x) ML(x IxO,... , x r) ds =f f(voxO + ... + vrxr) dV 1 ... dv"
L Qr

where ds is the volume element in L.
Now we shall restrict ourselves to the plane case.
Let xO,..., x r E R 2.

I . I . Or. IFor every x, xi, X *-x', we define the set Axixjc {x ,... ,x } by. X EA xixj

iff one of the following two assertions holds:

(i) Xl =,hl + (1-A)xi, °< A< 1.

(ii) Xl = Xl or Xl = xi and min(i, j) ~ 1 ~ max(i, j).

Let us denote n(x l
, x j

) = #A xixh where # denotes the cardinality, and
m(xk) = #{ll Xl = x k} (m(xk) is the multiplicity of the knot x k).

DEFINITION. Interpolating parameters for the set {xo, ..., x r} and
sufficiently smooth function f: R 2 -4 R we define as follows:
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fXIXi = ( (: ) n(xl,x
J

) - 2 f,
)[ANl un

where f[Axl,J] <p. is ~iven in (4) and a/an is the derivative with normal direction
to segment [Xl, x']. Also

THEOREM 5. Let xo, .." x' E R 2. Then for every collection of numbers

{Yu, y2, Il2
1 0 ~ i,j, k ~ r,x i '* xi, m(xk

) ~ 2,fJI + fJ2 ~ m(xk
) - 2}

there exists a unique 2-variate polynomial P of total degree not exceeding
r - 1 such that

and

Proof. Let us first prove that [xo,...,x'lr, for every a, lal=r-l, is
linear combination of interpolating parameters. Micchelli's relation (7) can
be used as recurrence relation for multivariate divided difference. This
reduces our problem to showing that

is a linear combination of interpolating parameters, where Xi ',••• , Xii lie on
some line L and a/an is normal direction to that line. It is not difficult to
show that in fact it is a linear combination of the following parameters:

#A XiXi = I.

Indeed

(
a)1-2 .. (a) 1-2J I I an f =f ML(x IXlI, ••• , Xli) an fds,

[x I, ... ,X I] L

fXIXi=f (aa ) 1-2 I
[Axlxll n

(
a) 1-2

=IrML(xIAxiXi) an Ids
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Now the proof is similar to that of the Theorem 2 since the number of
interpolating parameters is Ci I). I

COROLLARY. Let xo,..., x r E R k and let Pf be the polynomial with inter
polating parameters corresponding to f.

Then formulas for P obtained in the Lagrange case hold unchanged.

Proof. This is a consequence of the fact that [x/a, ... , xl;ja f, for all
o~ 1o,..., Ii ~ r, Ia I = i-I is a linear combination of interpolating
parameters of f. I

Remark. Hermite interpolation in an arbitrary space R k and another
proof of Theorem 1, which is based only on Micchelli's relation (7), will be
presented in [81.

In that paper another natural multivariate interpolation procedure,
preserving the pointwise nature of Lagrange and Hermite interpolation, will
be given.
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